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The finite deformational behaviour of materials containing rigid platelets embedded in an elastic matrix has 
been evaluated by assuming that the dominant microscopic deformation mechanism is shear of the matrix in 
a direction parallel to the plane of a platelet. The behaviour was determined for an initially isotropic sample 
undergoing uniaxial extension for the cases of uniform strain and uniform stress. The orientation distribution 
function of the platelet normals, the stress-strain diagram and orientation parameters such as Hermans' 
orientation factor were calculated. The predicted inclination of platelet normals for deformation at uniform 
stress gives an explanation for the observed 'cross-like' small angle X-ray scattering patterns found for 
diamine-extended polyurethane elastomers. For uniform strain, the retractive force diverges, whereas for 
uniform stress it is approximately proportional to the macroscopic extension ratio, with the slope showing a 
small minimum corresponding to a peak in the instantaneous compliance at an extension of about 10 ~o. 
Hermans' orientation factor for the platelet normal distribution becomes strongly negative with increasing 
extension ratio for both cases. 
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I N T R O D U C T I O N  

M a n y  polymers and composi te  materials contain 
lamellar inclusions in a relatively soft elastic matrix. 
For example, some diamine-extended segmented 
polyurethane elastomers consist of  platelet-shaped hard 
segment domains  which are embedded in a soft segment 
matrix x,6. 

It is of great interest to  develop a model  which describes 
the deformational  behaviour  of  this type of material. In 
Owen 's  matrix shear model  2, rigid platelets (or lamellae) 
are assumed to constrain the surrounding matrix to 
deform by simple shear at finite strains. The purpose of  
this paper  is to evaluate the matrix shear model  further for 
the cases of  large reversible deformations at uniform 
strain and uniform stress. 

T H E O R Y  

Shear model 
We consider an assembly of rigid platelets embedded in 

an incompressible, isotropic, elastic matrix. The 
dimensions of a platelet in the plane of the platelet are 
large compared  with its thickness. We define a 
microscopic structural unit  as the region of matrix 
material surrounding a platelet, where the platelets are 
imagined to be ' suspended '  in the matrix. The unit is 
transversely isotropic about  the platelet normal .  If  
platelets are arranged in stacks we may  also define a unit  
equivalently as the matrix material between two 
neighbouring parallel platelets. 

The incompressibility condit ion requires that,  in the 
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ne ighbourhood  of  a platelet, the matrix material is 
constrained to deform by shear in a direction parallel to 
the plane of  the platelet. We neglect deviations from this 
behaviour  which occur  near the edges of  the platelets and 
away from a platelet where differently oriented structural 
units meet. 

The geometry of  the matrix shear process can be 
illustrated by referring to Figure I. The paral lelogram 
A B C D  represents a microscopic section of  the matrix 
material near a platelet and away from the platelet edge. 
The local platelet normal  direction G D  lies in the plane of  
the figure. A tensile stress is applied in the Z direction, to 
which AB and C D  are parallel. AD and BC are parallel to 
the plane of the platelet. The matrix shears such that  Z 
and G D  are coplanar ,  i.e. the shear plane is the plane of  
the diagram. The shear direction is given by BC or AD,  
this being the direction of max imum shear stress in the 
plane of the platelet. A B C D  is t ransformed to A E F D  by 
simple shear. Simultaneously,  AE (or DF)  rotates back 
into the original direction*. The section of matrix extends 
by a factor  p = F D / C D  and contracts  laterally by l /p,  

* The forces acting on the parallelogram cause a couple when the matrix 
shears, which rotates AE into the stretching direction. If we can neglect 
edge effects, e.g. when the stress field is locally homogeneous, then the 
behaviour of the platelet (or the unit) is determined by the shear process. 
This is also valid if, for the case of parallel platelets, an offset of the 
platelets with respect to each other occurs, or if one of the platelets is 
wider than the neighbouring platelet. The 'overhanging' part of a 
platelet can be regarded as an isolated platelet in the matrix. The same 
shear deformation mechanism is valid for this part as for the parallel 
parts. This means that the structural units are in equilibrium and will 
not tend to show rigid body rotation under initial loading. 
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Figure 1 Rotational transformation of platelet norrnals due to matrix 
shear. DG is normal to a platelet. 0' is the angle between platelet normal 
and loading direction before the deformation; 0 is the angle after the 
deformation; F D / C D = #  is the local extension ratio 

whereas the dimension perpendicular to the plane of the 
figure is unaltered. The above deformation occurs locally 
in the region of each platelet, so that for each unit the 
angle transformation of the platelet normal can be written 
as 

1 
cos 0 = - c o s  0' (I) 

/t 

where/~ is the extension ratio of the unit, 0' is the angle 
between Z and GD in the undeformed state and 0 the 
corresponding angle after the deformation. 

In an initially undeformed material, platelet normals 
are assumed to be isotropically distributed. When the 
material is extended by applying a tensile load, the matrix 
becomes sheared and the platelet orientation changes 
according to equation (1). However, since the mechanical 
properties of each unit depend on the platelet inclination 
(see later), we are dealing with an assembly of anisotropic 
units with initially different properties in the loading 
direction, and also with properties which change during 
the deformation. The relationship between the 
microscopic extension ratio /~ of individual structural 
units and the macroscopic extension ratio 2 cannot be 
generally determined, since the coupling behaviour 
between the differing units is not known a priori. This will 
depend on the morphology of the sample (i.e. on the 
juxtaposition of the various platelets) and on the resulting 
stress distribution. However, two special cases, uniform 
longitudinal strain and stress, which are analogous to the 
Voigt and Reuss averaging procedures in the aggregate 
model of Ward 3 can be readily calculated; these will now 
be considered and compared. 

Orientation distribution of platelet normals 
The orientation distribution of platelet normals f~(0) is 

defined conventionally as the number of normals in a unit 
solid angle at an inclination 0 to the extension direction, 
i.e. f~(0)sin0d0 is the probability of finding a platelet at an 
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angle between 0 and 0 + dO (0 ° ~< 0 ~< 90°). For an uniaxial 
extension, it follows that 

sin0' dO' 
n(0) = (2) 

sin0 dO 

Homogeneous strain. In a situation where each 
structural unit has the same longitudinal strain, the 
microscopic extension ratio for each unit/~ is equal to the 
macroscopic extension ratio 2, i.e. 

~= , l  (3) 

This gives, from equations (1), (2) and (3), 

t), for cos 0 ~< 1/2 
f~(0, 2)= (4) 

0 otherwise 

Equation (4) shows that the platelet normals are 
uniformly distributed in the region cos 0 ~< 1/2, and are 
gradually concentrated nearer the transverse direction 
with increasing extension ratio (Figure 2). 

Homogeneous stress. In this case, each unit experiences 
the same tensile stress tr, which is equal to the applied 
stress. Referring firstly to a single unit, the shear stress r 
resolved parallel to the platelet in the plane containing the 
applied stress and the platelet normal (i.e. the maximum 
resolved shear stress) is given by 4's 

= a sin0 cos0 (5) 

The resulting shear strain ~ in the matrix is related to the 
shear stress by a shear modulus G where 

T 
= (6) 

G 

i.e. we assume the shear modulus G of the matrix is 
constant even for finite strains. This corresponds to the 
assumption of neo-Hookean elasticity of the rubbery 
matrix. 

From equations (5) and (6), the angle transformation 
relating 0', 0 and a is 

7 = tan 0 - tan 0' = a s i n  0 cos 0 (7) 
G 

Using equation (2), the orientation distribution function 
for a uniform stress a is then given by 

(1 - Acos20) (  1 + Acos20(1  - 2c0s20) )  

~(0,0") = (COS20 + sin20(1 _Acos20)2)3/2 (8) 

where A = a/G (cf. eq, (4) for uniform strain). 
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Figure 3 Homogeneous stress: orientation distribution of platelet 
normals for a/G=0.4,  1, 3 and 5. These values are equivalent to 
extension ratios 3. of 1.06, 1.15, 1.40 and 1.60 (Figure 5) 

D is plotted in Figure 3 for various values of A. With 
increasing stress, the fraction of platelets with normals 
parallel to the extension direction is reduced; for a > G or 
A > 1 there are only normals in the region cos0 < (l/A) 1/2. 
The most striking feature about the distribution is that 
the platelet normals take up a preferred inclination to the 
stretching direction, which becomes increasingly 
pronounced with increasing stress. 

Stress-strain behaviour 
It is straightforward to show from equations (1), (5), (6) 

and (7) that the stress-strain characteristic for a single 
unit with initial orientation 0' can be written as 

Gp2 <(1 sinO' 
o-QA,OI) ~ (9) co--~;( O~ 2-cos2o')1/2j 

This expression is plotted in Figure 4 for various values of 
the initial orientation 0'. Figure 4a shows curves for 
0' ~<45 ° while Figure 4b is for 0'~>45 °. (These have been 
plotted separately in order to avoid the confusion of 
overlapping curves.) At small strains, units with 0 '=  45 ° 
have the lowest modulus (i.e. the slope of the 45 ° curve is 
the smallest). With increasing deformation, units with 
0 < 45 ° become more compliant, since they rotate into a 
more compliant orientation. Units with 0 > 45 ° become 
increasingly stiff. (The unit with 0' = 90 ° is infinitely stiff.) 
At very large strains (Figure 4c) the units with the smallest 
starting orientations 0' eventually have the lowest 
stresses, in order of increasing 0'. 

It should be mentioned that, to take into account the 
volume fraction of platelets, G may be regarded as equal 
to Gm/Vm where G m is the actual shear modulus of the 
matrix and Vm is the volume fraction of the matrix. (The 
platelets, having a volume fraction 1 -  Vm, have been 
assumed to be infinitely stiff.) 

Homogeneous strain. For  this condition we can take a 
vertical line through the curves of Figure 4 to obtain the 
stress in each unit at a particular strain 2 = # .  This 
situation is problematical for units with 0' near 90 °, since 
the stress then becomes infinitely large. Thus, for 
homogeneous strain, the model does not allow us to 
calculate a stress-strain curve for an initially isotropic 
sample. This unrealistic situation suggests that in reality 
an inhomogeneous strain will occur, in order to reduce 
stress concentrations. 

Homogeneous stress. A horizontal line through the 
curves of Figure 4 shows that, when the stress is uniform, 
the strain is inhomogeneous. The stress-strain curve of 
the 'aggregate' of units and the instantaneous compliance 
along the stress-strain curve can be calculated, as follows: 

for a single structural unit, the increase in free energy (or 
elastic energy density) due to shearing (see eq. (7)) can be 
written 

1 2 
F(0,a) = ~G72 = ~ s i n 2 0  cos20 (10) 

We restrict ourselves to the case of a reversible 
deformation at constant volume. The free energy of the 
aggregate is found by averaging over all the structural 
units 

0 -2 
F(a) = <F(0,a)> = f~<sin20 cos20> 

n/2 

=~Gf sin2Oc°s20~(O'a)sinOdO 

0 

(11) 
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Figure 4 Stress-strain characteristic for a deformed unit defined by 
initial inclination 0': small deformations for (a) 0'~45°; (b) 0't>45°; 
and (c) large deformations 
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For the aggregate as a whole, the following relation is also 
valid 

d2 
dF = a de = a - -  (12) 

2 

where de is a longitudinal strain increment, and is related 
to a change in extension ratio d2 by de=d2/2.  
Furthermore, the compliance D is defined by 

de 1 d2 
D = - (13) 

da 2 da 

From (12) and (13) it follows that 

1 dF 
D(a) = - - -  (14) 

a da 

D(a) was then found from the slope of F(a) (eq. (11)). By 
rearranging equation (13), the stress-strain diagram was 
then found using the following relation 

~r 

0 

Equations (11), (14) and (15) were used to obtain the true 
stress-strain curve for the overall material by numerical 
integration (Figure 5). The compliance as a function of 
extension ratio 2 was then found by combining the results 
of equation (15) with D(a) from equation (14). This is 
shown in Figure 6. Of note is the peak in the compliance 
at an extension of approximately 10%. This is also 
noticeable as a slight minimum in the slope of the stress- 
strain curve (Figure 5). 
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Figure 6 Instantaneous elastic compliance along the stress-strain 
curve (uniform stress) 
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Figure 7 Hermans' orientation factor for the platelet norrnals. (a) 
Homogeneous strain, (b) homogeneous stress 
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Figure 8 Orientation parameter (sin20cos20). (a) Homogeneous 
strain, (b) homogeneous stress 

Orientation parameters for the distribution of platelet 
normals 

For homogeneous strain, the Hermans'  orientation 
factor for the distribution of lamellar normals f is given 
from reference 2 by 

1 1 
f = ~ (3(cos20) - 1) = ~ (1/22 - 1) (16) 

For  uniform stress, (cos2®) was calculated here 
numerically using equations (8) and (17), where 

hi2 

(cos20) = f cos20 ~(O,~)sinO dO 

0 
(17) 

This gives (cos20) as a function of stress a. We then used 
the stress-strain behaviour of Figure 5 to calculate f as a 
function of 2. 

Figure 7 shows f for both homogeneous strain and 
stress. Similar behaviour is obtained in both cases, f 
becoming sharply negative initially and then levelling off 
gradually to approach asymptotically the value of - 1/2, 
which describes the situation with all normals lying 
transversely. 

The orientation parameter (sin2®cos2®) is shown for 
both cases in Figure 8. For the uniform strain case, it is 
given analytically by 

( s in20cos20)=(cos20) - - (cos40)  

= 1/(322) - 1/(52") 
(18) 
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For homogeneous stress we performed a numerical 
calculation using equations (8) and (15). Both cases show 
similar behaviour, with a small peak occurring at about 
2= 1.1, after which a monotonic decrease takes place. 

Comparison of the instantaneous compliance curve 
(Figure 6) with the orientation parameter (sin20.cos20) 
(Figure 8) shows considerable similarity. The reason for 
this is as follows: combining equations (11) and (14), we 
obtain 

D(tr)=l (sin2Ocos20)-t-~G ~--~(sin2Ocos20) (19) 

For infinitesimal stresses and/or a situation where the 
orientation distribution is unchanged by stress, the 
second term is zero. This then reduces to the following 
result, which was obtained previously by Davies et al. 4 
and applied to the interlamellar shear behaviour of 
polyethylene showing a lamellar morphology, i.e. 

1 2 2 D=~(s in  0cos 0) (20) 

In this work, we have taken lamellar rotation into 
account for large deformations, with the consequent 
change in the instantaneous compliance of the elements as 
they are deformed (Figure 4). This means that the 
compliance along the stress-strain curve (eq. (13)) is not 
given by equation (20) for large stresses. However, for 
small stresses there is little difference, with (sin20.cos20) 
(Figure 8) and D (Figure 6) showing a similar maximum at 
approximately the same extension ratio. The model 
presented here is constructed analogously to the single- 
phase aggregate model of Ward 3. The orientation 
distribution of structural units changes due to the 
deformation, with the result that the second term in 
equation (19) arises. If this term is neglected, our model 
reduces to Ward's aggregate model with the special 
orientation mechanism of equation (1), in which the 
mechanical properties of the structural units are $44 = 1/G 
and Sij = 0 otherwise. 

CONCLUSIONS 

The matrix shear model presented here is an attempt to 

predict the reversible, finite deformational behaviour of 
materials containing rigid platelets embedded in an 
elastic matrix. We have treated the effect which we believe 
to be the dominant mechanism of deformation, i.e. shear 
of the matrix when constrained parallel to each platelet. 
Certain cases can be satisfactorily calculated. We have 
done this for both uniform longitudinal strain and stress. 
Deformation caused by normal stresses, and plastic and 
viscoelastic effects have not been considered. 

With regard to applications of the model, the 
orientation distribution function for homogeneous stress 
(Figure 3) shows a remarkable similarity with the 'cross- 
like' small-angle X-ray scattering patterns found for some 
diamine-extended segmented polyurethane (PU) elas- 
tomers 6. In addition, the Hermans' orientation factor 
(Figure 7) for the platelet normal distribution 
corresponds qualitatively with the negative orientation of 
hard segment C=O dipoles deduced by infra-red 
dichroism 7. The instantaneous compliance curve 
calculated for uniform stress (Figure 6) also resembles the 
experimental curve found for a PU elastomer 2. We are 
consequently encouraged to believe that the proposed 
matrix shear mechanism plays an important part in the 
deformation behaviour of these materials. The model is 
now being used to find the shear modulus of the soft 
segment matrix for various PU elastomers and to 
compare the results with molecular calculations. 
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